THE SHAPE OF THINGS TO COME:

A WINDOW INTO DESERT TORTOISE CONNECTIVITY IN AN INCREASINGLY URBAN WORLD

PROJECT PURPOSE & STATUS

Understand the effects of corridors
& quantify connectivity in disturbed habitat

Final report & deliverable submitted

Support provided by Clark County DCP, funded by SNPLMA, to further the Clark County MSHCP

GENETIC CONNECTIVITY

Panmixia

Isolation-by-Distance

Isolation

GENE FLOW, BARRIERS, & CORRIDORS

Gene Flow

MAIN CONNECTIVITY TAKEAWAYS

Effect of population density & addition of corridors

Impacts of habitat disturbance on population size & gene flow

Indicators of corridor success/failure

DISTURBANCE & LAG TIMES

1 generation

200 generations

Forward-in-Time Simulation Modeling

Proof-of-Concept Models

Population densities: low (3/km²), moderate (14/km²)

POPULATION & GENETIC ANALYSES

Time series

Generation 200

POPULATION SIZE & GENETIC DIVERSITY

POPULATION GENETIC STRUCTURE

	Neutral		Absolute Barrier		Permeable Barrier	
			e das secondos as a secondas das second			
	l One	Тю	One	Тио	Ore	Tilo
Moderate K= 1			K = 2		K = 2	
(14/km ²)						
	A REAL MANAGEMENT AND AND THE AND AND AND AN AND AND AND AND AND AND					
			I			
	One	Two	One	Two	One	Two
Low	K = 3		K = 2		K = 2	
(3/km ²)						

TAKEAWAY: EFFECT OF POPULATION DENSITY & ADDITION OF CORRIDORS

The addition of corridors improves connectivity

Higher densities improves connectivity

1 migrant/generation + former gene flow

CLARK COUNTY MODELED LANDSCAPE LOCATIONS

Locations: 17 Area of each: 525 to 625 km² Density: 1 to 24/km²

RESISTANCE SURFACES

Adapted from Nussear et al. 2009

Bounding the Landscape

RESISTANCE SURFACES

RESISTANCE SURFACES

Laughlin Current Future Jean/Roach

POPULATION SIZE & GENETIC DIVERSITY

POPULATION GENETIC STRUCTURE

TAKEAWAY: IMPACT OF DISTURBANCE ON POPULATION SIZE & GENE FLOW

Disturbance reduces population size, diversity, & connectivity

Pay attention to population size

CORRIDOR SUCCESS INDEX (CSI)

Absolute Barrier

HIGH LEVELS OF GENETIC CONNECTIVITY (CSI = 0.7-1)

INTERMEDIATE CONNECTIVITY (CSI = 0.35-0.69)

Low/No Connectivity (csi < 0.35)

LANDSCAPE METRICS

Number of habitat patches – measure of fragmentation

Percent habitat area – measure of habitat loss

FRAGMENTATION & CONNECTIVITY

Increasing Fragmentation

HABITAT LOSS & CONNECTIVITY

HABITAT LOSS & FRAGMENTATION

TAKEAWAY: INDICATORS OF CORRIDOR SUCCESS/FAILURE

More habitat + less fragmentation = more connectivity

Landscape dependent individual management units

MANAGEMENT RECOMMENDATIONS

■ Low/no connectivity landscapes – prioritize for restoration

Intermediate connectivity – strategically restore connectivity

High connectivity – maintain existing habitat

THANK YOU

Scott Cambrin Kimberley Jenkins Lee Bice Todd Esque Kristina Drake Felicia Chen Ben Gottsacker Amanda McDonald Sara Murray Jordan Swart Marjorie Matocq Anna Mitelberg Amy Vandergast

POPULATION & GENETIC ANALYSES

Generation 200

POPULATION, HETEROZYGOSITY, & DIFFERENTIATION

POPULATION, HETEROZYGOSITY, & DIFFERENTIATION

